If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-12w+4=0
a = 3; b = -12; c = +4;
Δ = b2-4ac
Δ = -122-4·3·4
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{6}}{2*3}=\frac{12-4\sqrt{6}}{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{6}}{2*3}=\frac{12+4\sqrt{6}}{6} $
| z2−4z=16.25 | | 4p=12{p-2 | | 54+112=x | | -3(3x+9=-24x+5) | | 20j=100 | | 62.10=(20+0.5x)+3+0.075x | | 39.1=0.575x | | -3+2=-4x+4 | | 0=(5x^2)+28x+51 | | 2x+9=35x+25 | | X=21/4.12x+6 | | 61+2x=101 | | 3y-4y=12y | | 8x–6=2x | | 28+92=x | | 2(x-4)=x-11+x+3 | | 4K-10=8k | | 0.08(x+2,000)=3,920 | | 1-8x^2=-767 | | J=xA=3+x | | n−-6n+18n−-19=-6 | | -1/9b=-2 | | 32-5x=102 | | (u-6)(u+8)=0 | | 7x^2-39x=-20 | | 7x+17=3(4x-1) | | 7x^2-39x=20 | | b=0.13(120,000-b) | | 6-m=5m=30 | | x=3(-4/15)+2 | | 245=-5(4x-17) | | 12x+54=35x-25 |